Data Science at Scale Specialization [16585]


Tackle Real Data Challenges

Master computational, statistical, and informational data science in three courses.

About This Specialization

Learn scalable data management, evaluate big data technologies, and design effective visualizations.

This Specialization covers intermediate topics in data science. You will gain hands-on experience with scalable SQL and NoSQL data management solutions, data mining algorithms, and practical statistical and machine learning concepts. You will also learn to visualize data and communicate results, and you’ll explore legal and ethical issues that arise in working with big data. In the final Capstone Project, developed in partnership with the digital internship platform Coursolve, you’ll apply your new skills to a real-world data science project.

Created by:


courses
4 courses

Follow the suggested order or choose your own.

projects
Projects

Designed to help you practice and apply the skills you learn.

certificates
Certificates

Highlight your new skills on your resume or LinkedIn.

Courses
Intermediate Specialization.
Some related experience required.
  1. COURSE 1

    Data Manipulation at Scale: Systems and Algorithms

    Upcoming session: Mar 13 — Apr 17.
    Commitment
    4 weeks of study, 6-8 hours/week
    Subtitles
    English

    About the Course

    Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales. In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages. write programs in Spark 6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams
    Show or hide details about course Data Manipulation at Scale: Systems and Algorithms
  2. COURSE 2

    Practical Predictive Analytics: Models and Methods

    Upcoming session: Mar 13 — Apr 17.
    Commitment
    4 weeks of study, 6-8 hours/week
    Subtitles
    English

    About the Course

    Statistical experiment design and analytics are at the heart of data science. In this course you will design statistical experiments and analyze the results using modern methods. You will also explore the common pitfalls in interpreting statistical arguments, especially those associated with big data. Collectively, this course will help you internalize a core set of practical and effective machine learning methods and concepts, and apply them to solve some real world problems. Learning Goals: After completing this course, you will be able to: 1. Design effective experiments and analyze the results 2. Use resampling methods to make clear and bulletproof statistical arguments without invoking esoteric notation 3. Explain and apply a core set of classification methods of increasing complexity (rules, trees, random forests), and associated optimization methods (gradient descent and variants) 4. Explain and apply a set of unsupervised learning concepts and methods 5. Describe the common idioms of large-scale graph analytics, including structural query, traversals and recursive queries, PageRank, and community detection
    Show or hide details about course Practical Predictive Analytics: Models and Methods
  3. COURSE 3

    Communicating Data Science Results

    Upcoming session: Mar 13 — Apr 10.
    Subtitles
    English

    About the Course

    Important note: The second assignment in this course covers the topic of Graph Analysis in the Cloud, in which you will use Elastic MapReduce and the Pig language to perform graph analysis over a moderately large dataset, about 600GB. In order to complete this assignment, you will need to make use of Amazon Web Services (AWS). Amazon has generously offered to provide up to $50 in free AWS credit to each learner in this course to allow you to complete the assignment. Further details regarding the process of receiving this credit are available in the welcome message for the course, as well as in the assignment itself. Please note that Amazon, University of Washington, and Coursera cannot reimburse you for any charges if you exhaust your credit. While we believe that this assignment contributes an excellent learning experience in this course, we understand that some learners may be unable or unwilling to use AWS. We are unable to issue Course Certificates for learners who do not complete the assignment that requires use of AWS. As such, you should not pay for a Course Certificate in Communicating Data Results if you are unable or unwilling to use AWS, as you will not be able to successfully complete the course without doing so. Making predictions is not enough! Effective data scientists know how to explain and interpret their results, and communicate findings accurately to stakeholders to inform business decisions. Visualization is the field of research in computer science that studies effective communication of quantitative results by linking perception, cognition, and algorithms to exploit the enormous bandwidth of the human visual cortex. In this course you will learn to recognize, design, and use effective visualizations. Just because you can make a prediction and convince others to act on it doesn’t mean you should. In this course you will explore the ethical considerations around big data and how these considerations are beginning to influence policy and practice. You will learn the foundational limitations of using technology to protect privacy and the codes of conduct emerging to guide the behavior of data scientists. You will also learn the importance of reproducibility in data science and how the commercial cloud can help support reproducible research even for experiments involving massive datasets, complex computational infrastructures, or both. Learning Goals: After completing this course, you will be able to: 1. Design and critique visualizations 2. Explain the state-of-the-art in privacy, ethics, governance around big data and data science 3. Use cloud computing to analyze large datasets in a reproducible way.
    Show or hide details about course Communicating Data Science Results
  4. COURSE 4

    Data Science at Scale - Capstone Project

    Upcoming session: May 8 — Jun 26.
    Commitment
    6 weeks of study, 3-4 hours/week
    Subtitles
    English

    About the Capstone Project

    In the capstone, students will engage on a real world project requiring them to apply skills from the entire data science pipeline: preparing, organizing, and transforming data, constructing a model, and evaluating results. Through a collaboration with Coursolve, each Capstone project is associated with partner stakeholders who have a vested interest in your results and are eager to deploy them in practice. These projects will not be straightforward and the outcome is not prescribed -- you will need to tolerate ambiguity and negative results! But we believe the experience will be rewarding and will better prepare you for data science projects in practice.
    Show or hide details about course Data Science at Scale - Capstone Project

Creators

  • University of Washington

    The University of Washington is a national and international leader in the core fields that are driving data science: computer science, statistics, human-centered design, and applied math.

    Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

  • Bill Howe

    Bill Howe

    Director of Research

 

Enroll


Відкрито безкоштовний доступ для українців до навчальних програм Genius з 1 листопада до 4 грудня
10 наших найпопулярніших курсів із free
Безкоштовні курси для українців
Безкоштовні онлайн-сервіси вивчення мов для українців
Освітній онлайн-курс «Деривативи на ринках агропродовольчої продукції в Україні та світі» - USAID FST
Основи фінансів та інвестицій
Коронавірусна інфекція: факти проти паніки
Class Central’s Top 100 MOOCs of All Time (2019 edition)
100+ Free Online Courses to Learn about the UN’s Sustainable Development Goals
200 Best Free Coursera Courses in 2019


Все статьи раздела Образование

The market is fierce
Fickle as the wind it blows
Fortune comes and goes

- Fin.Org.UA

Новини

11:48 - Оновлено Єдине вікно подання електронної звітності
11:47 - Чи обов’язково укладати письмовий трудовий договір?
11:45 - До уваги платників акцизного податку!
11:43 - Платники єдиного податку звітують за новими формами
11:41 - Яку ліцензію необхідно придбати суб’єкту господарювання для здійснення роздрібної торгівлі виключно пивом?
11:36 - Довідка про відсутність заборгованості зі сплати єдиного внеску: як отримати?
11:34 - За видобування нафти надходження від платників рентної плати до місцевих бюджетів Дніпропетровщини зросли майже у 3 рази
11:34 - За видобування нафти надходження від платників рентної плати до місцевих бюджетів Дніпропетровщини зросли майже у 3 рази
11:27 - Від юридичних осіб - платників податку на нерухливе майно до місцевих бюджетів Дніпропетровщини надійшло майже 158,1 млн гривень
11:21 - Рентна плата: протягом першого кварталу платники Дніпропетровщини поповнили загальний фонд держбюджету на понад 1,2 млрд гривень
11:14 - Податківці Дніпропетровщини зустрілися з бізнесом Самарівського та Павлоградського районів та обговорили шляхи погашення заборгованості
11:13 - Комунікаційні заходи з платниками на Дніпропетровщині: податківці роз’яснюють, консультують, надають практичну допомогу
11:11 - Обговорення у консультаційному центрі з питань зупинення реєстрації ПН/РК: платникам податку роз’яснили як вийти з ризикової категорії
11:10 - Податкова знижка за благодійність: що треба знати громадянам
11:09 - Громадяни вже задекларували 88,2 млрд грн доходів, отриманих у 2024 році
11:00 - Як агрегація в енергетиці може заробляти для бізнесу та населення і чому це поки складно
10:35 - Курс валют на 16 квітня: євро дешевшає після історичних рекордів
10:15 - В Україні кожен третій пенсіонер отримує пенсію 3 340
10:05 - США пом'якшили вимоги з компенсації допомоги Україні в угоді про надра – Bloomberg
09:45 - Бестселери Європи: які авто найбільш популярні серед європейців
09:35 - Мільярд доларів на кону: мита Трампа можуть вдарити по чиповій індустрії США
09:00 - Нафта знижується на тлі побоювань щодо торговельної війни США та Китаю
07:40 - Бензин в Україні почнуть змішувати зі спиртом. Що буде з цінами та чи нашкодить це авто?
07:35 - Фінансовий астрологічний прогноз на 16.04.2025
07:00 - "Зелений" шанс для вугілля
00:00 - Новини від Міністерства енергетики України
21:00 - Новини 15 квітня: Україна ближче до ЄС по роумінгу, про ліміти коштів
20:30 - Туалетний папір, одяг і косметика: ЄС опублікував список товарів США, на які може накласти контрмита
20:05 - У московії створять реєстр "підозрілих" криптогаманців
19:30 - Перший ФОП з інвалідністю отримав компенсацію на облаштування свого робочого місця


Більше новин

ВалютаКурс
Алжирський динар0.31061
Австралійський долар26.1751
Така0.3375
Канадський долар29.678
Юань Женьміньбі5.6283
Чеська крона1.8595
Данська крона6.2444
Гонконгівський долар5.3088
Форинт0.114417
Індійська рупія0.48007
Рупія0.0024468
Новий ізраїльський шекель11.1559
Єна0.28805
Теньге0.079483
Вона0.02886
Ліванський фунт0.00046
Малайзійський ринггіт9.3315
Мексиканське песо2.0523
Молдовський лей2.3794
Новозеландський долар24.3758
Норвезька крона3.8911
Саудівський ріял10.9731
Сінгапурський долар31.2597
Донг0.0015921
Ренд2.175
Шведська крона4.2135
Швейцарський франк50.4661
Бат1.22644
Дирхам ОАЕ11.21
Туніський динар13.7306
Єгипетський фунт0.8075
Фунт стерлінгів54.4543
Долар США41.1753
Сербський динар0.39753
Азербайджанський манат24.225
Румунський лей9.3636
Турецька ліра1.0808
СПЗ (спеціальні права запозичення)55.693
Болгарський лев23.8311
Євро46.6104
Ларі14.9592
Злотий10.8843
Золото132578.29
Срібло1328.75
Платина39620.93
Паладій39667.05

Курси валют, встановлені НБУ на 16.04.2025